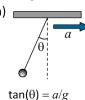
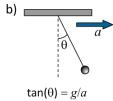
a) 12 N

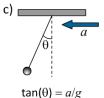
b) 36 N

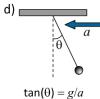
Objective: Learn to use the Newton's laws of motion for simple problems

Only one option correct

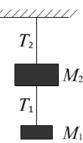

1.			duces an acceleration or ration of 2 ms ^{-b)} Ratio of c) 6:1	f 2.5 ms $^{-2}$ Another force F_2 acting on F_1 to F_2 is d) 8:1	
2.	A feather of mass 20 g is dropped from a certain height. If it falls down with constant velocity, the acting on it is				
	a) 200 N	b) 0.2 N	c) 0.02 N	d) zero	
3.	If a constant force acts on a body, initially at rest, the distance covered by the body in a time interval t is proportional to				
	a) <i>t</i>	b) t ²	c) 1/t	d) \sqrt{t}	
4.	A wagon, initially at rest, is pushed on a frictionless surface with a force of 60N for 14s. It then enters a rough region and comes to rest in 0.15 s. Average force exerted by the rough region on the wagon is a) 6000 N b) 5600 N c) 4500 N d) 4000 N				
5	•	•	•	•	
٥.	. Initial momentum of a body is 20 kg ms ⁻¹ If a force of 10 N acts on the body, in the direction of its 0.2 s its final momentum will be				
	a) 10 kg ms ⁻¹	b) 2 kg ms ⁻¹	c) 18 kg ms ⁻¹	d) 22 kg ms ⁻¹	
6.	A body of mass 12 kg moves with an acceleration of 3 $\mathrm{ms}^{\text{-2}}$ on a smooth table under the application of an external force. The tension in the string is				
			$T \longrightarrow F$		
	a) 12 N	b) 4 N	T → F c) 15 N	d) 36 N	
7.	Two bodies of mass 2 kg and 6 kg are connected using a light inextensible string. If the 2 kg mass is pulled by a force of 24 N, the acceleration of the system is				
	a) 3 ms^{-2} b) 16 ms^{-2} c) 2 ms^{-2} d) 6 ms^{-2}				
	a) 3 ms ⁻²	b) 16 ms ⁻²	c) 2 ms ⁻²	d) 6 ms ⁻²	
8.	The common acceleration of two bodies connected as shown in the figure is 2 ms^{-2} . The applied force (F) is				
	a) 2.5 N b) 5 N c) 7.5 N d) 10 N				
	a) 2.5 N	b) 5 N	c) 7.5 N	d) 10 N	
9.	Two bodies, having masses in the ratio of 3:5 are connected by a light inextensible string. If a force of 16N causes an acceleration of 0.5 ms ⁻² , the masses are				
	a) 3 kg and 5 kg	b) 6 kg and 10 kg	c) 9 kg and 15 kg	d) 12 kg and 20 kg	
10.	10. If tension in the string connecting two bodies of masses 3 kg and 6 kg is 12 N then the force (F) applied on the system is				
		3 kg	12 N 6 kg		


c) 72 N

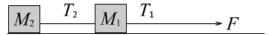

d) 108 N

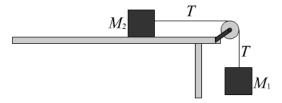

Laws of motion

11. A metal bob is suspended by a light inextensible string. This set up is placed in a box moving on a horizontal surface with uniform acceleration a as indicated in the figure. Choose the correct orientation of the bob and the angle made by the string

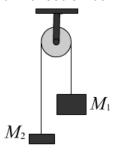


- 12. A body of mass 8 kg, placed on a smooth horizontal table, is connected to another body of mass 2 kg suspended using a light inextensible string passing over a pulley. Common acceleration of the system is (g =10 ms⁻²)
 - a) 3 ms⁻²
- b) 16 ms⁻²
- c) 2 ms⁻²
- d) 6 ms⁻²
- 13. In the figure given below the tension in the string is ($g = 10 \text{ ms}^{-2}$)


- a) 5 N
- b) 10 N
- c) 25 N
- d) 50 N
- 14. In an Atwood's machine, two bodies each of mass 3 kg are connected by a light inextensible string. Force exerted on the pulley by the clamp holding it is ($g = 10 \text{ ms}^{-2}$)
 - a) 60N
- b) 30 N
- c) 15 N
- d) zero
- 15. A person of mass 60 kg is in a lift moving up with acceleration of 2 ms^{-b)} His apparent weight is ($g = 10 \text{ms}^{-2}$)
 - a) 600 N as observed by him and 720 N as observed by a person on ground
 - b) 720 N as observed by him and 600 N as observed by a person on ground
 - c) 720 N as observed by him and by a person on ground
 - d) 600 N as observed by him and by a person on ground
- 16. Two bodies are suspended from a rigid support as shown in the figure.


- a) Net force acting on both the blocks is zero
- b) $T_2 > T_1$ only if $M_2 > M_1$
- c) $T_2 = T_1$ only if $M_2 = M_1$
- d) $T_2 > T_1$ even if $M_2 < M_1$

Laws of motion


17. Two bodies, placed on a smooth horizontal table, are connected by light inextensible string as shown in the figure.

- a) As the F is increased, T_1 and T_2 increase.
- b) If M_1 is doubled while and F and M_2 are constant, then T_1 remains constant while T_2 increases
- c) If M_2 is doubled while and F and M_1 are constant, then T_1 remains constant while T_2 increases
- d) If F is doubled while and M_1 and M_2 are constant, then the ratio of T_1 to T_2 remains constant
- 18. Two bodies are connected as shown in the figure.

- a) If M_1 is doubled while M_2 is constant, then T and the common acceleration of the system increases by two times
- b) If M_2 is doubled while M_1 is constant, then T and the common acceleration of the system increases by two times
- c) If both M_2 and M_1 are doubled, then T increases by four times while the common acceleration of the system increases by two times
- d) If M_2 is equal to M_1 then T is not equal to zero but acceleration is zero
- 19. Two bodies are connected to each other as in an Atwood's machine as shown in the figure. In this situation

- a) Tension in the string is equal to zero only if $M_1 = M_2$
- b) Net force acting on the pulley is zero even if M_1 is not equal to M_2
- c) Magnitude of net force acting M_2 is equal to the net force acting on M_1 only if $M_1 = M_2$
- d) Magnitude of net force acting M_2 is always equal to the net force acting on M_1
- 20. Consider a person in an elevator. Weight of the person when elevator is stationary is W.
 - a) Weight of the person when elevator is moving up with acceleration is greater than W.
 - b) Weight of the person when elevator is moving up with deceleration is less than W.
 - c) Weight of the person when elevator is moving down with acceleration is greater than W.
 - d) Weight of the person when elevator is moving down with deceleration is less than W.

Laws of motion

Answers

- 1. a
- 2. d
- 3. b
- 4. b
- 5. d
- 6. d
- 7. a
- 8. d
- 9. d
- 10. b
- . .
- 11. a
- 12. c
- 13. c
- 14. a
- 15. c
- 16. a, d
- 17. a, c, d
- 18. a
- 19. b, c
- 20. a, b